Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 193(2): 175-191, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37074955

RESUMO

Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-ß pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-ß buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Material Particulado/toxicidade , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Camundongos Transgênicos
2.
Toxicol Sci ; 170(1): 144-156, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923833

RESUMO

Chronic exposure to copper and its dyshomeostasis have been linked to accelerated cognitive decline and potentially increasing risk for Alzheimer's disease (AD). We and others have previously demonstrated that exposure to copper through drinking water significantly increased parenchymal amyloid-beta (Aß) plaques and decreased endothelial low-density lipoprotein receptor-related protein 1 (LRP1) in mouse models of AD. In this study, we determined the underlying mechanisms that microRNA critically mediated the copper-induced loss of endothelial LRP1. In human primary microvascular endothelial cells (MVECs), microRNA-200b-3p, -200c-3p, and -205-5p were significantly elevated within the 24-h exposure to copper and returned to baseline after 48-h postexposure, which corresponded with the temporal change of LRP1 expression in these cells. Transient expression of synthetic microRNA-200b-3p, -200c-3p, or -205-5p on MVECs significantly decreased endothelial LRP1, and cotreatment of synthetic antagomirs effectively prevented the loss of LRP1 during copper exposure, collectively supporting the key regulatory role of these microRNAs in copper-induced loss of LRP1. In mice, a significant reduction of LRP1 in cortical vasculature was evident following 9 months exposure to 1.3 ppm copper in drinking water, although the levels of cortical microRNA-205-5p, -200b-3p, and -200c-3p were only marginally elevated. This, however, correlated with increased vascular accumulation of Aß and impairment of spatial memory, indicating that copper exposure has the pivotal role in the vascular damage and development of cognitive decline.


Assuntos
Doença de Alzheimer/induzido quimicamente , Encéfalo/efeitos dos fármacos , Cobre/toxicidade , Células Endoteliais/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , MicroRNAs/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/irrigação sanguínea , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Memória Espacial/efeitos dos fármacos , Transfecção , Regulação para Cima
3.
Neuroscience ; 348: 191-200, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28215745

RESUMO

Abnormal buildup of the microtubule associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) and various tauopathies. The mechanisms by which pathological tau accumulates and spreads throughout the brain remain largely unknown. Previously, we demonstrated that a restoration of the major astrocytic glutamate transporter, GLT1, ameliorated a buildup of tau pathology and rescued cognition in a mouse model of AD. We hypothesized that aberrant extracellular glutamate and abnormal neuronal excitatory activities promoted tau pathology. In the present study, we investigated genetic interactions between tau and the GLT1 homolog dEaat1 in Drosophila melanogaster. Neuronal-specific overexpression of human wildtype tau markedly shortened lifespan and impaired motor behavior. RNAi depletion of dEaat1 in astrocytes worsened these phenotypes, whereas overexpression of dEaat1 improved them. However, the synaptic neuropil appeared unaffected, and we failed to detect any major neuronal loss with tau overexpression in combination with dEaat1 depletion. To mimic glutamate-induced aberrant excitatory input in neurons, repeated depolarization of neurons via transgenic TrpA1 was applied to the adult Drosophila optic nerves, and we examined the change of tau deposits. Repeated depolarization significantly increased the accumulation of tau in these neurons. We propose that increased neuronal excitatory activity exacerbates tau-mediated neuronal toxicity and behavioral deficits.


Assuntos
Astrócitos/metabolismo , Proteínas de Drosophila/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...